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Quark-Gluon Plasma (QGP)

* Quark-gluon plasma: a state of matter, consisting of
asymptotically free moving quarks and gluons which are
ordinarily confined within nucleons by color confinement.

https://today.uic.edu/collider-reveals-sharp-change-from-quark-soup-to-atoms
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Quark-Gluon Plasma (QGP)

* This state is believed to exist at extremely high temperature and/or
density
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Why 1s QGP interesting?

 Existed 10°s after Big Bang
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Why 1s QGP interesting?

e Arich QCD lab
— What does the QCD phase diagram look like? What QCD dynamics drives it?
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How to study QGP?

 Re-create QGPin alab
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Create the QGP 1n a lab

* Heavy-ion collisions

— T.D. Lee, 1974: We should investigate phenomena by distributing high
energy or high nucleon density over a relatively large volume

RHIC: AutAu LHC: Pb+Pb
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Study QGP 1n a lab

Heavy-ion collisions 2

Time—>»

& 3

Energy Stopping Hydrodynamic ‘
Hard Collisions Evolution Hadron Freezeout

Initial state

* How to measure final-state particles? -> Detectors
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General requirements for detectors

Y s

* High efficiency s

* Large acceptance

— measure as many particles as one can in acceptance
* High resolution

— measure particles’ properties as precise as one can

* Particle identification capability

— 1dentify particle species, €.g. pions, kaons, protons, etc
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Heavy-1on experiments
STAR @ RHIC ALICE @ LHC

 RHIC: PHENIX shut down in 2016
« LHC: CMS, ATLAS and LHCb also take heavy-ion data
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STAR @ RHIC

* Heavy-ion collisions happen at the center of STAR
* Cylindrical shape; magnet sits at radius ~ 3 m

STAR Detector System

15 fully functioning detector systems

* Complexity
— Many different sub-

components serving different
purposes

— Hundreds of thousands of
readout channels

X102 increases in DAQ rate since 2000, most precise Silicon Detector (HFT)
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Time Projection Chamber

* QGas detector taking 3D photos of the tracks of passing charged particles

IP: interaction point
IFC: inner field cage
OFC: outer field cage
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Time Projection Chamber

* QGas detector taking 3D photos of the tracks of passing charged particles

particles

gas volume with E
& B fields
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Time Projection Chamber

* QGas detector taking 3D photos of the tracks of passing charged particles

| dE/dxVs.P |
12

* Energy loss in the TPC 1s
determined by particle species

 Number of drifted electrons is
proportional to the energy loss

* Limited at higher momenta
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From electronic signal to physics

1) Data taking
— Usually in the first half of a year
— 24/7 4-person shift to take data and monitor the status of detectors
— Rates: ~2 kHz for Au+Au @ 200 GeV, 500 TB/week
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From electronic signal to physics

1) Data taking

— Usually in the first half of a year
— 24/7 4-person shift to take data and monitor the status of detectors
— Rates: ~2 kHz for Au+Au @ 200 GeV, 500 TB/week

2) Calibration
— Convert electronic signal to physical quantities, such as energy

3) Data production
— Vertex: position where the collision happens
— Charged particles: momentum, position, charge ...

4) Analysis

— Correct for detector acceptance, efficiency and resolution
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real event taken by STAR
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Characterize QGP

* Global properties

— Bulk of produced particles, mainly of low energies

* Penetrating probes of high energies
— Analogous to shooting laser through a volume of gas

— External probes not possible due to QGP’s short life time
(~ 1023 s)

* Which group has more particles? Why? ?

-
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Centrality

* Used to quantify how much the colliding 1ons overlap

central peripheral

v (8
=V

* Head-on * Glance through
* Smallerb  Largerb
* Larger/hotter medium * Smaller/no medium
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Initial energy & temperature
* Recall: g, ~ 1 GeV/fm?; T, ~ 165 MeV

Measure particle density Black-body radiation
11 10
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Elliptic flow (v,)
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* Spatial asymmetry = yield asymmetry in azimuth

— Different pressure gradients along x- and y-direction

— Depends on overlapping geometry, etc
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A nearly ‘perfect” fluid

[T '( )' T B. Schenke, et. al, PRC 99 (2019) 044908
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Jet quenching

High energy quarks and gluons, produced early, traverse the QGP

QGP 1s believed to be “opaque” to them; expect energy loss due to
strong interactions
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Nuclear modification factor (R, ,)

no medium effects > R, , =1

p . L N, 2
AA < N > N : L\
colt | ¥ pp Jet quenching? 2 Ry, <1
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Charged particle R, ,

e Participant scaling T
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STAR, PRL 91 (2003) 172302

* Up to a factor of 4-5 suppression at large momenta = jet quenching

@
—cad

Will R ,, become larger or smaller in peripheral events?
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Future of heavy-1on experiments

* Explore QCD phase diagram and QGP properties with detector
upgrades, significantly more recorded events and new facilities
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Courtesy of A. Dainese, QM2019
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Summary

*  What is the Quark-Gluon Plasma (QGP)?
v' A state of matter with deconfined quarks and gluons
*  Why i1s the QGP interesting?
v' Existed at early Universe; QCD phase diagram
 How to create the QGP in a lab?
v" Heavy-ion collisions
* How to study the QGP in a lab?
— How do we access the QGP? - Detectors
— What have we learnt about the QGP? - “Perfect” fluid; quench jets ...
* What 1s the future of heavy-ion experiments?

v Exciting 10 years of physics program ahead and more ...
v" Electron-Ion Collider to be built at BNL
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Future of HI experiments: low Vs

* Explore QCD phase diagram and QGP properties with detector
upgrades, significantly more recorded events and new facilities

Facility SISI8 HIAF Nuclotron | J-PARC-HI SIS100 NICA RHIC Ty SPS

Experiment HADES / A= BM@N DHS, D2S CcBM / MPD STAR NAG | NAG60+
mMiniCBM

Start 2012,2018

v s GeV

g, MeV

Courtesy of T. Galatyuk, OM2018
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Future of HI experiments: high Vs

* Explore QCD phase diagram and QGP properties with detector
upgrades, significantly more recorded events and new facilities

Timeline

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 = 2030

T T

LHC run 2 sPHENIX const. RHIC run Upgrades “LHC LS3”
sPHENIX ATLAS:
RHIC run STAR upgrades + 10" events read out - Tracker (acc x2)
+ Sampled 50 nb™! - Timing
STAR CMS: ?
- 10° events read out - Tracker (acc x2)
- Encap Calorimeter
Upgrades “LHC LS2” LHCb:
= LHC: collimators + injectors - TOF?
= ALICE: Tracking, DAQ (rate x100)

- ATLAS: Fast tracker trigger (rate x2) LHC Run 3 + 4 (numbers for Pb-Pb)
- CMS: pixel detector (rate x2) « L=6"-10"cm?3s'~ 50 kHz rate
* LHCb: VELO, tracker, DAQ (rate x10) = 10 nb' (ALICE, CMS, ATLAS)

The Future of High-Energy Heavy-lon Facilities - Jan Fiete Grosse-Oetringhaus
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